Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment.

نویسندگان

  • A J Holmes
  • N J Owens
  • J C Murrell
چکیده

A major limitation of rRNA-targeted group-specific probes is that they may cross-react with organisms of other physiological, or even phylogenetic groups when applied to environmental samples containing unknown sequences. We have exploited the restricted physiology of methane-oxidizing bacteria to assess the specificity and efficiency of probes for this physiological type which target the 16S rRNA or genes involved in methanotroph physiology. Seawater samples were enriched for methanotrophs by addition of methane and essential nutrients. The changes in composition of the bacterial population were monitored by analysis of 16S rRNA gene libraries. Methanotroph group-specific probes failed to give a signal with samples from these enrichments even though a methanol dehydrogenase structural gene was detected. A 16S rDNA sequence that was abundant only after methane addition was recovered and found to show a close phylogenetic relationship to Methylomonas. Organisms containing this sequence were observed in enrichments by in situ hybridization. The combination of enrichment on methane and screening with the broad specificity methanol dehydrogenase probe allowed detection of novel methanotrophs that were not detected with the original suite of methanotroph group-specific probes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescence in situ hybridization-flow cytometry-cell sorting-based method for separation and enrichment of type I and type II methanotroph populations.

A fluorescence in situ hybridization-flow cytometry (FISH/FC)-based method was optimized using artificial mixtures of pure cultures of methanotrophic bacteria. Traditional oligonucleotide probes targeting 16S rRNAs of type I (MG84/705 probe) and type II (MA450 probe) methanotrophs were labeled with fluorescein or Alexa fluor and used for FISH, followed by fluorescence-activated FC analysis and ...

متن کامل

Amplification of marine methanotrophic enrichment DNA with 16S rDNA PCR primers for type II alpha proteobacteria methanotrophs.

Type II alpha proteobacteria methanotrophs are capable of a wide range of cometabolic transformations of chlorinated solvents and polycyclic aromatic hydrocarbons (PAHs), and this activity has been exploited in many terrestrial bioremediation systems. However, at present, all known obligately marine methanotrophic isolates are Type I gamma proteobacteria which do not have this activity to the e...

متن کامل

Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria.

Fifteen small-subunit rRNAs from methylotrophic bacteria have been sequenced. Comparisons of these sequences with 22 previously published sequences further defined the phylogenetic relationships among these bacteria and illustrated the agreement between phylogeny and physiological characteristics of the bacteria. Phylogenetic trees were constructed with 16S rRNA sequences from methylotrophic ba...

متن کامل

Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions

Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and ...

متن کامل

Diversity of functional genes for methanotrophs in sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico.

Methanotrophs are ubiquitous in soil, fresh water and the open ocean, but have not been well characterized in deep-sea hydrocarbon seeps and gas hydrates, where methane is unusually abundant. Here we report the presence of new functional genes for the aerobic oxidation of methane by methanotrophs in marine sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico. Sampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 141 ( Pt 8)  شماره 

صفحات  -

تاریخ انتشار 1995